Preprint MCS-P411-0194, Mathematics and Computer Science Div., Argonne National Laboratory, Argonne, Ill. 60439

FINITE-PART INTEGRALS AND
THE EULER-MACLAURIN EXPANSION*

J. N. Lyness'
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Abstract

The context of this note is the discretization error made by the m-panel
trapezoidal rule when the integrand has an algebraic singularity at one end,
say ¢ = 0, of the finite integration interval. In the absence of a singularity,
this error is described by the classical Euler-Maclaurin summation formula,
which 1s an asymptotic expansion in inverse integer powers of m. When an
integrable singularity (z® with o > —1) is present, Navot’s generalization
is valid. This introduces negative fractional powers of m into the expansion.
Ninham has generalized this result to noninteger « satisfying o < —1. In this
note, we extend these results to all o by providing the nontrivial extension
to negative integer «. This expansion differs from the previous expansions
by the introduction of a term log m.

1 INTRODUCTION

The classical Euler-Maclaurin summation formula (see (2.14) below with g = 1)
is an asymptotic expansion in integer powers of 1/m of the discretization error of
the m-panel trapezoidal rule. This formula is valid when f(), together with its
early derivatives, is continuous over the integration interval.

A major generalization to integrable functions of the form f(x) = #%g(x),
where g(z) is regular and & > —1, was established by Navot in 1961. Later, Ninham
(1966) generalized the result to the cases in which & < —1 but is not an integer. He
established that the expansion was formally the same but that divergent integrals
should be interpreted as Hadamard finite-part integrals. In this paper we complete
the theory by covering the negative integer case. We also provide much simpler
proofs for the other cases than those provided by Navot and by Ninham.
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The ultimate result in this paper is Theorem 3.2. This establishes an asymp-
totic expansion for the m-panel offset trapezoidal rule R(m)(ﬁ)f, which is valid
for all integrand functions of the form z%g(x), where g(x) is regular and o may
take any value, whether or not the integral being approximated is convergent. This
expansion may include terms in m=7, m~U+®) and logm for both positive and
negative integer j. Integral representations are given for all terms in the expansion
and for the remainder term.

2 CLASSICAL BACKGROUND MATERIAL

In this section, we recall some elementary results about Hadamard’s finite-part
integral and about the Euler-Maclaurin asymptotic expansion. In each case, we
treat the integration interval [0,1]. Background material about these is available
in many references, including, for example, Davis and Rabinowitz (1984), pp. 11,
188, and 136, and Diligenti and Monegato (1994). For our purposes we treat only
finite-part integrals of the form

1
If = fp/o z%g(x)de, (2.1)

where g(z) is regular; specifically, g(z) € C?71[0,1] with « € R, ¢ € Z*, and
q> —a.

We recall that any convergent conventional integral coincides with the corre-
sponding finite-part integral and that finite-part integrals may be combined and
manipulated in much the same way as conventional integrals. An exception is the
classical change of variable rule, which needs minor modification; details may be
found in Monegato (1994).

We now provide a two-stage elementary definition of the finite-part integrals

(2.1) above.

Definition 2.1 For all real o, the Hadamard finite-part integral If, of the func-
tion fo(x) = x® over the unit interval [0,1] is defined by

1
If, = / fa(z)dx a>—1
0
= _/00 fa(z)dx a< -1
1
- 0 a=—1. (2.2)

Clearly, If, coincides with f,(1) when this is defined. For values of « for which
the first integral in (2.2) exists, the second does not, and vice versa.



Unless « is a nonnegative integer, f&s)(l‘) is a constant multiple of fo_;(z).
A simple result, needed in a later proof, is the following lemma.

Lemma 2.2

/m f&s)(l‘)dl‘ — (ma—s+1 _ 1)If&s) a—s # 1
1
n logm
(s) _ logm () (¢ o
/1 Ja (@) = log2 / Is a—s=-1 (2.3)

It 1s trivial to verify this. The underlying reason that this result and the subsequent
theory is simple is that the integrand is a homogeneous function of degree a — s
about the origin.

Extending Definition 2.1 to functions of the form z%g(x), where g(x) €
C*[0,1], requires only the expression of g(x) as a Taylor expansion about the
origin and term-by-term integration of a finite series. Specifically, we may set

z) = ig(j)(O)xj/j! + Go(x) (2.4)

and

flz) = Z“aﬂfaﬂ )+ 2%Ge(x), (2.5)

where '
Kot = 99(O)/51 (2:6)
When ¢+ a4+ 1 > 0, the remainder term

Fop(z) = 2%Go(x Z“aﬂ fatj(z (2.7)

is integrable over [0,1]. Term-by-term integration of (2.5) above leads to the fol-
lowing definition.

Definition 2.3 Let f(z) = 2%g(z) and g(z) € C?710,1] with ¢ + a > 0; then

-1

g—1
If= Z“aﬂffaﬂ / (f(x) _Z“a+jfa+j($))dxa (2.8)
j=0

j=0

where Koyj = g(0)/4! and Ifatj is defined in Definition 2.1 above.



We now turn to the Euler-Maclaurin expansion.
Definition 2.4 The offsel trapezoidal rule for the interval [0,1] is denoled by

RM(3)f = %mz_:lf (#) : (2.9)

j=0

The Euler-Maclaurin expansion involves coefficients and kernel functions

ei() = B.(B)/3! 5> 0, (2.10)
ho(B,0) = (B.(B) — Bo(8 — 1))/s! s> 1, (2.11)

where B;(z) is the Bernoulli polynomial and B, (x) the corresponding Bernoulli
function, which coincides with B;(z) in the interval (0,1) and has unit period.
Note that

hp(B,1) = hp(8, 1 +1) (2.12)

w(0) = [ hytp e (2.13)

Theorem 2.5 The Fuler-Maclaurin asymptotic expansion for regular f(x)

Let f(x) and its first p derivatives be integrable in [0,1], and let p > 1. Then

p—1 1 1
mgyf = S ) [T o L (»)
R (B)f—s; - /0 £ (@) d + mp/o hy(B, m)FO (t)dt.  (2.14)

Note that ¢g(8) = 1, and so the first term in the summation is simply If.

3 THE EULER-MACLAURIN EXPANSION
FOR z2“

In this paper, we treat functions that have an algebraic singularity at an end point
of our integration interval, [0,1]. We restrict our attention to functions of the form

f(x) = x%g(x), (3.1)
where g(x) is C?[0, 1]. First we treat the monomial
falz) = 2% (3.2)



and then, as the theory is linear, we concatenate individual terms of this type,
using a Taylor expansion for g(z), to obtain the corresponding expansion for f(x)

n (3.1).

The basic theorem in this paper is the following.

Theorem 3.1 The Fuler-Maclaurin expansion for x®

Let o be real, and let p be a nonnegative integer satisfying p+a+1> 0; then

RO = A=) s ogn 5O gy (as)
s=0
where .
r— [e%)
Aoi(Bifa) = 10 = e + [ hppfmod (34)
s=0
and
E(3)f = mw/ ho (8,00 (8)dt = O(m™). (3.5)

The integrals in (3.3) are defined in (2.2) as either conventional or Hadamard
finite-part integrals. Simpler expressions for (3.4) are established in Section 4.

The proof given below, valid for all «, involves only elementary algebra and
calculus. It exploits the fact that the result may be considered to be a matter of
scaling. Comments on previous proofs of less general versions of this theorem are
made in Section 5.

Proof. As a preliminary, we apply (2.14) translated to the interval [j, j + 1] with
m = 1 to the function fu(x). This gives

p—1 i+l
LGB =G40 = Y eld / 1)(@)da
s=0

+1
+/] BP0yt j=1,2,... m—1.(3.6)
i

Note that we have used the periodicity property (2.12) of h,(5,1).

We now substitute (3.6) into a scaled version of Definition 2.4 as follows.



R™(B) fa

1S, (i+8
E'Ofoz< m )

J=

1 m—1
= —= Zfa(jJrﬁ)

= mlta fo‘ +Z csl+oz/ f&s)(l‘)dl‘
1
b [ B0 (37)

Here we have isolated the term with 5 = 0. We have collected together integrals
over [4,7 + 1] to form an integral over [1,m]. In the final term we have used once
more the periodicity of the kernel function h,(5,t). Up to this point, no singularity
is involved | and any nonnegative integer p is permitted. All manipulation has been
conventional. Qur final manipulative steps are to apply Lemma 2.2 to reexpress
the integrals whose upper limit is m, and to split the final integral into two parts.
We find, when « is not an integer,

p—1
Cs me—* s
s=1
1 [
- (p)
e / (8.0 1
1 [
T motl /m hp(ﬁ,t)f&p)(t)dt p>—1—a. (3.8)

Note that the condition on p is needed only to validate splitting the final integral,
extracting a part of order m~(1%%) and leaving another part, the remainder term
of lower order.

When « is an integer, (3.8) may require adjustment. Specifically, in the sum
over index s in (3.7), any term in which &« — s = —1 should have been replaced
by the second member of (2.3) instead of the first. Since s is nonnegative, this
adjustment is needed, if at all, only when o < —1. In these cases, one should
remove the current term with s = o+ 1 and introduce the second member of (2.3),
to obtain a single additional term, namely,

c14a(B) logm / foti(y

motl Jog?2

Moreover, when « is nonnegative, the integrand is zero. Thus, this additional term
is nonzero only when o« = —1, when it reduces to logm.



Collecting together terms of specific orders in m, we recover the expressions
given in the statement of the theorem. To establish the theorem, we need to show
that the term (3.5) is of the order stated and that (3.4) is not dependent on p.
Since fo(z) = 2%, we see

«

B = A [0t e et

matt m (a_p)

An elementary calculation shows that

B (B)fal < g e (3, )1m

o
(a—p+1)
establishing the correct order.

This dependence on p in the expression (3.4) is illusory. Since h,(3,t) is
periodic in ¢ and

j+1
/ hy (B, 1)dt = ¢, (1),
J

integration by parts yields the same expression for Aq41(5; fo) with p replaced
by p+ 1. (We cannot replace p in this expression by any integer less than —ev — 1.
Besides not being justified, the resulting (incorrect) expression contains a divergent
integral.)

This theorem asserts that the expansion, with this value of A, 41, holds for
all finite p exceeding —a — 1.

For smaller values of p, we find directly from Theorem 2.5 that

p—1
R(m)(ﬁ)fa — Z c;(l_ﬁjjf((j) + E;)m)(ﬁ)fa
s=0 5

with .
. 1
MO = o [ b wa < a1

It follows that, when p and p are integers satisfying p < —a — 1 < p, the forms of
remainder terms are connected by

P

r(m Cs(ﬁ) s AO&-l—l(ﬁafOz) m

E(8) fo = Z Wff& ) + B E— Ez(? (8)fa-
s=p

When « is a nonnegative integer, the expression for Ao11(3; fo) reduces to zero,

and fc(f) = 0 for s > a + 1.The result in the statement of the theorem follows
directly from Theorem 2.5.



It is a simple step from the Euler-Maclaurin expansion for fu(z) in this
theorem to the corresponding expansion for f,(z)g(x) when g(z) is regular. We
simply follow our definition of the Hadamard finite-part integral by expanding
¢(x) in a Taylor series. This gives expansion (2.5). We may apply already available
versions of the Euler-Maclaurin expansion to each term in this expansion. We
shall apply Theorem 2.5 to the final term. To this end we require that g(x) have
sufficient continuity that the final term in (2.5) differentiated p times is integrable.
We treat

g(x) e CPY10 1] with p+qg+a>0; p>1; ¢>0. (3.9)
Tt is convenient to differentiate (2.5) term by term to obtain

ptg—1

FO@) = D war S5 @)+ FO L) s=0,1,...,p (3.10)

j=0
and integrate term by term to obtain

ptg-1
1) = Z g 170 +/0 FO, (@)de  s=0,1,...,p. (3.11)

These formulas are helpful in establishing the following theorem.

Theorem 3.2 Let « be real, p a positive integer, and q a nonnegative integer
satisfying p+ q+ o > 0. Let f(x) = %g(x), where

g(x) € CT7H0,1].

Then
pt+q— 1 (6 f)
R™@)f = > “;;C:zlﬂ + Koy lnm—l—z f(s)
j=0
+0(m™?), (3.12)

where k_1 1s taken to be zero unless « is a negative integer and

Aat145 (85 f) = BatjAat145 (55 fats)- (3.13)

Proof. When g(z) € CPT¢710,1] with p 4+ ¢ + « > 0, it follows that the p-th
derivative of Fyypyq(2) is integrable in [0,1]. Hence, we may apply Theorem 2.5 to
this function. Applying Theorem 3.1 to the other terms in (2.5), we find



ptg—1

R™@) = Y kg R™(B) fari + R™(B) Fapry

j=0
ptg—-1 AL ptg—-1
_ Z RatjAatj+l Z N ]
- ma+]'+1 + RatjOadtj41,001M
j=0 j=0
—1c p+q 1 r+q—-1
S
+Z Z Ratjlfotj + Z Kot By () fati
5s=0

cs(
+Z - /F{gﬂ )dae +—/ (8;mt)FE) L (1)dt. (3.14)
s=0

In view of (3.5) and (2.14), the fourth and the sixth term here are O(m™?) and
belong in the remainder term in (3.12). Also belonging in this remainder term are
those elements in the summation in the first expression for which o + 5+ 1 > p.
The third and fifth expressions here can be reduced, by using (3.11), to the sum
over index s in (3.12). Finally, the second term above exists only when « is an
integer and j = —a — 1. This gives the second term in (3.12). Thus, all terms in
(3.14) are accounted for; together they give rise to the right-hand side of (3.12).
This establishes the theorem. H

4 NUMERICAL VALUES OF THE
EXPANSION COEFFICIENTS

It was shown by Navot and by Ninham that, when « # integer,

Aoz-l—l(ﬁ; foz) :C(_aaﬁ)a (41)
where ( is the Hurwitz zeta function, defined by
(=, B)=8"+(B+1)*+... B>0 a<-1 (4.2)

and by analytic continuation for all values of & other than —1, where this analytic
function has its only singularity, a pole of order 1.

A simple proof of (4.1) valid when o > —1 may be obtained by applying
a version of the Euler-Maclaurin expansion (2.14) with m = 1, f(z) = 2% to an
interval [k, k + 1]. This procedure gives

p—1 E+1 k41
Jalk+8) = (k+5)° = 3 a(9) / JO () di+ / By (8, mt) fP) (1)t (4.3)



Set v < 1, sum (4.3) over all positive integer &, and add f,(5) to both sides. The
result is ((—«, ) on the left and Definition (3.4) for Ag41(8; fa) on the right.

For « a positive integer, one may use (3.4) and (2.14) with p > o and m = 1
to show directly
Aap1(Bif) =0  a=0,1,2,... . (4.4)

Analytic continuation of the Hurwitz zeta function establishes (4.1) above for all
« except a = —1.

The reader will have noticed that, because of the singularity, no information
about Ag(f5; f—1) has been forthcoming. This turns out to be the most intractable
of the coefficients, and, as will appear below, it is the only one for which a numerical
value is required in the extrapolation application. In Theorem 4.1 below, this value
is expressed in terms of the Euler-Mascheroni constant

m

1
v = lim E ——Inm | ~0.5772 (4.5)
j=1

and a finite harmonic function defined by

1O =% (z- ) (1.6

n>1

This function appears in Knuth (1973) where it is not given a name; when 3 = p/q
and p and ¢ are positive integers satisfying 0 < p < ¢, Knuth (p. 94) shows that

H(p) = % —ircot fr —In2q + 2 21 <n<q/2 08 2mnFlnsin L. (4.7)

Explicit forms of these expressions are listed by Knuth (p. 616) for all p, ¢
satisfying 0 < p < ¢ < 6. For example,

H(1) =1; H(%):Q—an?.
Theorem 4.1 )
AM&ﬁﬁ=7+B—HW% (4.8)

where v is the Fuler-Mascheroni constant (4.5) above, and H(B) is Knuth’s finite
harmonic function ({.6) above.

Proof. We exploit the expansion in which Ay occurs, namely, (3.3) with o = —1.
This gives

10



RV@B)fy = %Zlﬁ— o(B: f-1) + logm

| .

p—1 (s)
SOUFL L o a)fr.

m
0

+

5

Since If_1 = 0, the s = 0 term in the sum is zero. Taking the limit as m becomes
infinite, we find

m—1

. 1
Ao(B; f-1) = lim | D g losm
]:
Elementary manipulation of this, involving (4.5) and (4.6) above, leads directly to
the result in the theorem. N

Examples include

Ao(L; f21) = Ao(%;5f-1)=v+2In2.

5 CONCLUDING REMARKS

It is beyond the scope of this paper to discuss in any detail the ways in which
this expansion may be used for extrapolation or to examine its relationship with
known quadrature formulas. We content ourselves by making a few points of a
general nature.

When a finite-part integral is being approximated using extrapolation and so
a < —1, one is extracting the coefficient of a higher-order term in the expansion
instead of the principal term. This is akin to numerical differentiation, and one
should expect a corresponding increase in the amplification of noise level error in
the calculation.

When, in addition, « is a negative integer, say & = —N | the expansion takes
the following form.

R(m)(ﬁ)f = konAivmN N4 4k sA_im+k_ilnm

—I—/-c_le—l—If—l—clT(n—mlf(l)—l—...

We may extrapolate in the usual way. But when doing so, we shall be obliged to
extract estimates of two coefficients, namely, k_1 and x_1Ag+If. Then, to obtain

11



If |, we have to separate it from k_1 Ag. This step requires both the extrapolated
value of k_; and the numerical value of constant Ag(8; f—1). For some values of 3,
the latter 1s provided by Theorem 4.1. This is an unusual situation in the practice
of extrapolation. Usually only simple data, such as the value of & and data relating
to the structure of the expansion, are required.

The significant result of this paper is Theorem 3.2. Various proofs for the
conventional case o > —1, have appeared. The original proof by Navot (1961)
involves several pages of detailed algebraic manipulation. A subsequent proof by
Lyness and Ninham (1967) is shorter but involves generalized functions in an
essential way. A somewhat pedestrian proof using the generalized zeta function
has been given by Lyness (1971). None of these proofs is particularly illuminating.
The reader finds, at the end, that the result has been established. For the finite-part
integral case with noninteger o, Ninham’s proof involves a Fourier decomposition
of the integrand, as well as the use of generalized functions. That paper comprises
an elegant but lengthy application of a little known theory contained in a twelve-
page paper devoted to this single result.

The proof of Section 3 of this paper is more general and more straightforward
than any of the proofs mentioned above.
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